数学教案-指数函数
= 与 图象之间关于 轴对称,而此时 的图象已经有了,具备了变换的条件.让学生自己做对称,教师借助计算机画图,在同一坐标系下得到 的图象.
最后问学生是否需要再画.(可能有两种可能性,若学生认为无需再画,则追问其原因并要求其说出性质,若认为还需画,则教师可利用计算机再画出如 的图象一起比较,再找共性)
由于图象是形的特征,所以先从几何角度看它们有什么特征.教师可列一个表,如下:
以上内容学生说不齐的,教师可适当提出观察角度让学生去描述,然后再让学生将几何的特征,翻译为函数的性质,即从代数角度的描述,将表中另一部分填满.
填好后,让学生仿照此例再列一个 的表,将相应的内容填好.为进一步整理性质,教师可提出从另一个角度来分类,整理函数的性质.
3.性质.
(1)无论 为何值,指数函数 都有定义域为 ,值域为 ,都过点 .
(2) 时, 在定义域内为增函数, 时, 为减函数.
(3) 时, , 时, .
总结之后,特别提醒学生记住函数的图象,有了图,从图中就可以能读出性质.
三.简单应用 (板书)
1.利用指数函数单调性比大小. (板书)
一类函数研究完它的概念,图象和性质后,最重要的是利用它解决一些简单的问题.首先我们来看下面的问题.
例1. 比较下列各组数的大小
(1) 与 ; (2) 与 ;
(3) 与1 .(板书)
首先让学生观察两个数的特点,有什么相同?由学生指出它们底数相同,指数不同.再追问根据这个特点,用什么方法来比较它们的大小呢?让学生联想指数函数,提出构造函数的方法,即把这两个数看作某个函数的函数值,利用它的单调性比较大小.然后以第(1)题为例,给出解答过程.
解: 在 上是增函数,且
< .(板书)
教师最后再强调过程必须写清三句话:
(1) 构造函数并指明函数的单调区间及相应的单调性.
(2) 自变量的大小比较.
(3) 函数值的大小比较.
后两个题的过程略.要求学生仿照第(1)题叙述过程.
例2.比较下列各组数的大小
(1) 与 ; (2) 与 ;
(3) 与 .(板书)
先让学生观察例2中各组数与例1中的区别,再思考解决的方法.引导学生发现对(1)来说 可以写成 ,这样就可以转化成同底的问题,再用例1的方法解决,对(2)来说 可以写成 ,也可转化成同底的,而(3)前面的方法就不适用了,考虑新的转化方法,由学生思考解决.(教师可提示学生指数函数的函数值与1有关,可以用1来起桥梁作用)
最后由学生说出 >1, <1, > .
解决后由教师小结比较大小的方法
(1) 构造函数的方法: 数的特征是同底不同指(包括可转化为同底的)
(2) 搭桥比较法: 用特殊的数1或0.
三.巩固练习
练习:比较下列各组数的大小(板书)
(1) 与 (2) 与 ;
(3) 与 ; (4) 与 .解答过程略
四.小结
1.指数函数的概念
2.指数函数的图象和性质
3.简单应用
五 .板书设计
探究活动
(1) 对于 的图象和 的图象大家都比较熟悉也能画出它的图象,现在如果将 和 的 图象画在同一坐标系中,你认为它们会有几个交点呢?为什么?
答案:有两个交点.
(2) A先生从今天开始每天给你10万元,而你承担如下任务:第一天给A先生1元,第二天给A先生2元,,第三天给A先生4元,第四天给A先生8元,依次下去,…,A先生要和你签定15天的合同,你同意吗?又A先生要和你签定30天的合同,你能签这个合同吗?
答案:15天的合同可以签,而30 天的合同不能签.
,数学教案-指数函数
- ·上一篇:(丑小鸭)课本剧之一
- ·下一篇:(一面)课本剧
- › 数学教案-逻辑联结词
- › 数学教案-等比数列
- › 数学教案-函数的应用举例
- › 数学教案-指数
- › 数学教案-约分
- › 数学教案-对数函数
- › 数学教案-分数四则混合运算
- › 数学教案-分数除法应用题
- › 数学教案-比例的应用
- › 数学教案-分数乘除法对比练习
- › 数学教案-分数乘、除法应用题对比
- › 数学教案-列方程解稍复杂的分数应用题
- › 数学教案-折线统计图
- › 数学教案-数的意义
- › 数学教案-四则运算的意义和法则
- › 数学教案-分数乘、除法应用题的对比
- › 数学教案-数学六年级下学期 第一单元测试题(二)
- tag: 数学 高一数学教案,高一数学必修3教案范文,高一数学必修1教案,优秀教案 - 数学教案 - 高一数学教案
网友评论>>
栏目分类
高一数学教案 推荐
- · 交集、并集
- · 数学教案-逻辑联结词
- · 数学教案-等比数列
- · 数学教案-函数的应用举例
- · 数学教案-指数
- · 上学期 1.5 一元二次不等式的解法
- · 集合
- · 上学期 1.7 四种命题
- · 对数函数
- · 等差数列
- · 数学教案-约分
- · 四种命题
- · 指数
- · 映射
- · 含绝对值的不等式
- · 逻辑联结词
- · 数学教案-对数函数
- · 上学期 1.2 子集、全集、补集
- · 上学期 1.4 含绝对值的不等式
- · 上学期 1.1 集合
- · 数学教案-函数解析式的求法
- · 数学教案-已知三角函数值求角
- · 数学教案-椭圆的定义
- · 数学教案-反函数
- · 数学教案-不等式证明一(比较法)
- · 数学教案-等差数列