不等式的证实3
一路求学网 http://www.16qiuxue.com 阅览次数: 634次 12-28 20:02:22
标签:人教版高二数学教案范文,高二数学导数教案,http://www.16qiuxue.com
不等式的证实3,
教学目标
1.把握分析法证实不等式;
2.理解分析法实质——执果索因;
3.提高证实不等式证法灵活性.
教学重点 分析法
教学难点 分析法实质的理解
教学方法 启发引导式
教学活动
(一)导入新课
(教师活动)教师提出问题,待学生回答和思考后点评.
(学生活动)回答和思考教师提出的问题.
[问题1]我们已经学习了哪几种不等式的证实方法?什么是比较法?什么是综合法?
[问题 2]能否用比较法或综合法证实不等式:
[点评]在证实不等式时,若用比较法或综合法难以下手时,可采用另一种证实方法:分析法.(板书课题)
设计意图:复习已学证实不等式的方法.指出用比较法和综合法证实不等式的不足之处,
激发学生学习新的证实不等式知识的积极性,导入本节课学习内容:用分析法证实不等式.
(二)新课讲授
尝试探索、建立新知
(教师活动)教师讲解综合法证实不等式的逻辑关系,然后提出问题供学生研究,并点评.帮助学生建立分析法证实不等式的知识体系.投影分析法证实不等式的概念.
(学生活动)与教师一道分析综合法的逻辑关系,在教师启发、引导下尝试探索,构建新知.
[讲解]综合法证实不等式的逻辑关系:以已知条件中的不等式或基本不等式作为结论,逐步寻找它成立的必要条件,直到必要条件就是要证实的不等式.
[问题1]我们能不能用同样的思考问题的方式,把要证实的不等式作为结论,逐步去寻找它成立的充分条件呢?
[问题2]当我们寻找的充分条件已经是成立的不等式时,说明了什么呢?
[问题3]说明要证实的不等式成立的理由是什么呢?
[点评]从要证实的结论入手,逆求使它成立的充分条件,直到充分条件显然成立为止,从而得出要证实的结论成立.就是分析法的逻辑关系.
[投影]分析法证实不等式的概念.(见课本)
设计意图:对比综合法的逻辑关系,教师层层设置问题,激发学生积极思考、研究.建立新的知识;分析法证实不等式.培养学习创新意识.
例题示范、学会应用
(教师活动)教师板书或投影例题,引导学生研究问题,构思证题方法,学会用分析法证实不等式,并点评用分析法证实不等式必须注重的问题.
(学生活动)学生在教师引导下,研究问题,与教师一道完成问题的论证.
例1求证
[分析]此题用比较法和综合法都很难入手,应考虑用分析法.
证实:(见课本)
[点评]证实某些含有根式的不等式时,用综合法比较困难.此例中,我们很难想到从“ ”入手,因此,在不等式的证实中,分析法占有重要的位置,我们常用分析法探索证实途径,然后用综合法的形式写出证实过程,这是解决数学问题的一种重要思维方法,事实上,有些综合法的表述正是建立在分析法思考的基础上,分析法的优越性正体现在此.
例2已知: ,求证: (用分析法)请思考下列证法有没有错误?若有错误,错在何处?
[投影]证法一:因为 ,所以 、去分母,化为 ,就是 .由已知 成立,所以求证的不等式成立.
证法二:欲证 ,因为
只需证 ,
即证 ,
即证
因为 成立,所以 成立.
(证法二正确,证法一错误.错误的原因是:虽然是从结论出发,但不是逐步逆战结论成立的充分条件,事实上找到明显成立的不等式是结论的必要条件,所以不符合分析法的逻辑原理,犯了逻辑上的错误.)
[点评]①用分析法证实不等式的逻辑关系是:
(结论)(步步寻找不等式成立的充分条件)(结论)
分析法是“执果索因”,它与综合法的证实过程(由因导果)恰恰相反.②用分析法证实时要注重书写格式.分析法论证“若A则B”这个命题的书写格式是:
要证命题B为真,
只需证实 为真,从而有……
这只需证实 为真,从而又有……
……
这只需证实A为真.
而已知A为真,故命题B必为真.
要理解上述格式中蕴含的逻辑关系.
[投影] 例3 证实:通过水管放水,当流速相同时,假如水管截面(指横截面,下同)的周长相等,那么截面是圆的水管比截面是正方形的水管流量大.
[分析]设未知数,列方程,因为当水的流速相同时,水管的流量取决于水管截面面积的大小,设截面的周长为 ,则周长为 的圆的半径为 ,截面积为 ;周长为 的正方形边长为 ,截面积为 ,所以本题只需证实:
证实:(见课本)
设计意图:理解分析法与综合法的内在联系,说明分析法在证实不等式中的重要地位.掌
握分析法证实不等式,非凡重视分析法证题格式及格式中蕴含的逻辑关系.灵活把握分析法的应用,培养学生应用数学知识解决实际问题的能力.
课堂练习
(教师活动)打出字幕(练习),请甲、乙两位同学板演,巡视学生的解题情况,对正确的证法给予肯定,对偏差及时纠正.点评练习中存在的问题.
(学生活动)在笔记本上完成练习,甲、乙两位同学板演.
字幕练习1.求证
2.求证:
设计意图:把握用分析法证实不等式,反馈课堂效果,调节课堂教学.
分析归纳、小结解法
(教师活动)分析归纳例题和练习的解题过程,小给用分析法证实不等式的解题方法.
(学生活动)与教师一道分析归纳,小结解题方法,并记录笔记.
1.分析法是证实不等式的一种常用基本方法.当证题不知从何入手时,有时可以运用分析法而获得解决,非凡是对于条件简单而结论复杂的题目往往更是行之有效的.
2.用分析法证实不等式时,要正确运用不等式的性质逆找充分条件,注重分析法的证题格式.
设计意图:培养学生分析归纳问题的能力,把握分析法证实不等式的方法.
(三)小结
(教师活动)教师小结本节课所学的知识.
(学生活动)与教师一道小结,并记录笔记.
本节课主要学习了用分析法证实不等式.应用分析法证实不等式时,把握一些常用技巧:
通分、约分、多项式乘法、因式分解、去分母,两边乘方、开方等.在使用这些技巧变形时,要注重遵循不等式的性质.另外还要适当把握指数、对数的性质、三角公式在逆推中的灵活运用.理解分析法和综合法是对立统一的两个方面.有时可以用分析法思考,而用综合法书写证实,或者分析法、综合法相结合,共同完成证实过程.
设计意图:培养学生对所学知识进行概括归纳的能力,巩固所学知识.
(四)布置作业
1.课本作业:P17 4、5.
2.思考题:若 ,求证
3.研究性题:已知函数 , ,若 、 ,且 证实
设计意图:思考题供学有余力同学练习,研究性题供学生研究分析法证实有关问题.
(五)课后点评
教学过程是不断发现问题、解决问题的思维过程.本节课在形成分析法证实不等式认知结构中,教师提出问题或引导学生发现问题,然后开拓学生思路,启迪学生聪明,求得问题解决.一个问题解决后,及时地提出新问题,提高学生的思维层次,逐步由非凡到一般,由具体到抽象,由表面到本质,把学生的思维步步引向深入,直到完成本节课的教学任务.总之,本节课的教学安排是让学生的思维由问题开始,到问题深化,始终处于积极主动状态.
,不等式的证实3
不等式的证实3
第四课时教学目标
1.把握分析法证实不等式;
2.理解分析法实质——执果索因;
3.提高证实不等式证法灵活性.
教学重点 分析法
教学难点 分析法实质的理解
教学方法 启发引导式
教学活动
(一)导入新课
(教师活动)教师提出问题,待学生回答和思考后点评.
(学生活动)回答和思考教师提出的问题.
[问题1]我们已经学习了哪几种不等式的证实方法?什么是比较法?什么是综合法?
[问题 2]能否用比较法或综合法证实不等式:
[点评]在证实不等式时,若用比较法或综合法难以下手时,可采用另一种证实方法:分析法.(板书课题)
设计意图:复习已学证实不等式的方法.指出用比较法和综合法证实不等式的不足之处,
激发学生学习新的证实不等式知识的积极性,导入本节课学习内容:用分析法证实不等式.
(二)新课讲授
尝试探索、建立新知
(教师活动)教师讲解综合法证实不等式的逻辑关系,然后提出问题供学生研究,并点评.帮助学生建立分析法证实不等式的知识体系.投影分析法证实不等式的概念.
(学生活动)与教师一道分析综合法的逻辑关系,在教师启发、引导下尝试探索,构建新知.
[讲解]综合法证实不等式的逻辑关系:以已知条件中的不等式或基本不等式作为结论,逐步寻找它成立的必要条件,直到必要条件就是要证实的不等式.
[问题1]我们能不能用同样的思考问题的方式,把要证实的不等式作为结论,逐步去寻找它成立的充分条件呢?
[问题2]当我们寻找的充分条件已经是成立的不等式时,说明了什么呢?
[问题3]说明要证实的不等式成立的理由是什么呢?
[点评]从要证实的结论入手,逆求使它成立的充分条件,直到充分条件显然成立为止,从而得出要证实的结论成立.就是分析法的逻辑关系.
[投影]分析法证实不等式的概念.(见课本)
设计意图:对比综合法的逻辑关系,教师层层设置问题,激发学生积极思考、研究.建立新的知识;分析法证实不等式.培养学习创新意识.
例题示范、学会应用
(教师活动)教师板书或投影例题,引导学生研究问题,构思证题方法,学会用分析法证实不等式,并点评用分析法证实不等式必须注重的问题.
(学生活动)学生在教师引导下,研究问题,与教师一道完成问题的论证.
例1求证
[分析]此题用比较法和综合法都很难入手,应考虑用分析法.
证实:(见课本)
[点评]证实某些含有根式的不等式时,用综合法比较困难.此例中,我们很难想到从“ ”入手,因此,在不等式的证实中,分析法占有重要的位置,我们常用分析法探索证实途径,然后用综合法的形式写出证实过程,这是解决数学问题的一种重要思维方法,事实上,有些综合法的表述正是建立在分析法思考的基础上,分析法的优越性正体现在此.
例2已知: ,求证: (用分析法)请思考下列证法有没有错误?若有错误,错在何处?
[投影]证法一:因为 ,所以 、去分母,化为 ,就是 .由已知 成立,所以求证的不等式成立.
证法二:欲证 ,因为
只需证 ,
即证 ,
即证
因为 成立,所以 成立.
(证法二正确,证法一错误.错误的原因是:虽然是从结论出发,但不是逐步逆战结论成立的充分条件,事实上找到明显成立的不等式是结论的必要条件,所以不符合分析法的逻辑原理,犯了逻辑上的错误.)
[点评]①用分析法证实不等式的逻辑关系是:
(结论)(步步寻找不等式成立的充分条件)(结论)
分析法是“执果索因”,它与综合法的证实过程(由因导果)恰恰相反.②用分析法证实时要注重书写格式.分析法论证“若A则B”这个命题的书写格式是:
要证命题B为真,
只需证实 为真,从而有……
这只需证实 为真,从而又有……
……
这只需证实A为真.
而已知A为真,故命题B必为真.
要理解上述格式中蕴含的逻辑关系.
[投影] 例3 证实:通过水管放水,当流速相同时,假如水管截面(指横截面,下同)的周长相等,那么截面是圆的水管比截面是正方形的水管流量大.
[分析]设未知数,列方程,因为当水的流速相同时,水管的流量取决于水管截面面积的大小,设截面的周长为 ,则周长为 的圆的半径为 ,截面积为 ;周长为 的正方形边长为 ,截面积为 ,所以本题只需证实:
证实:(见课本)
设计意图:理解分析法与综合法的内在联系,说明分析法在证实不等式中的重要地位.掌
握分析法证实不等式,非凡重视分析法证题格式及格式中蕴含的逻辑关系.灵活把握分析法的应用,培养学生应用数学知识解决实际问题的能力.
课堂练习
(教师活动)打出字幕(练习),请甲、乙两位同学板演,巡视学生的解题情况,对正确的证法给予肯定,对偏差及时纠正.点评练习中存在的问题.
(学生活动)在笔记本上完成练习,甲、乙两位同学板演.
字幕练习1.求证
2.求证:
设计意图:把握用分析法证实不等式,反馈课堂效果,调节课堂教学.
分析归纳、小结解法
(教师活动)分析归纳例题和练习的解题过程,小给用分析法证实不等式的解题方法.
(学生活动)与教师一道分析归纳,小结解题方法,并记录笔记.
1.分析法是证实不等式的一种常用基本方法.当证题不知从何入手时,有时可以运用分析法而获得解决,非凡是对于条件简单而结论复杂的题目往往更是行之有效的.
2.用分析法证实不等式时,要正确运用不等式的性质逆找充分条件,注重分析法的证题格式.
设计意图:培养学生分析归纳问题的能力,把握分析法证实不等式的方法.
(三)小结
(教师活动)教师小结本节课所学的知识.
(学生活动)与教师一道小结,并记录笔记.
本节课主要学习了用分析法证实不等式.应用分析法证实不等式时,把握一些常用技巧:
通分、约分、多项式乘法、因式分解、去分母,两边乘方、开方等.在使用这些技巧变形时,要注重遵循不等式的性质.另外还要适当把握指数、对数的性质、三角公式在逆推中的灵活运用.理解分析法和综合法是对立统一的两个方面.有时可以用分析法思考,而用综合法书写证实,或者分析法、综合法相结合,共同完成证实过程.
设计意图:培养学生对所学知识进行概括归纳的能力,巩固所学知识.
(四)布置作业
1.课本作业:P17 4、5.
2.思考题:若 ,求证
3.研究性题:已知函数 , ,若 、 ,且 证实
设计意图:思考题供学有余力同学练习,研究性题供学生研究分析法证实有关问题.
(五)课后点评
教学过程是不断发现问题、解决问题的思维过程.本节课在形成分析法证实不等式认知结构中,教师提出问题或引导学生发现问题,然后开拓学生思路,启迪学生聪明,求得问题解决.一个问题解决后,及时地提出新问题,提高学生的思维层次,逐步由非凡到一般,由具体到抽象,由表面到本质,把学生的思维步步引向深入,直到完成本节课的教学任务.总之,本节课的教学安排是让学生的思维由问题开始,到问题深化,始终处于积极主动状态.
,不等式的证实3
《不等式的证实3》相关文章
- › 上学期 1.5 一元二次不等式的解法
- › 一元二次不等式的解法1
- › 不等式的解集教案
- › (不等式的解集)说课稿
- › 数学教案-不等式的性质(二)
- › 数学教案-不等式的证明(二)
- › 不等式的证明(一)
- › 不等式的性质(三)
- › 不等式的解法举例
- › 不等式的证实3
- › 不等式的证实1
- › 不等式的性质3
- tag: 不等式 高二数学教案,人教版高二数学教案范文,高二数学导数教案,优秀教案 - 数学教案 - 高二数学教案
网友评论>>
栏目分类
高二数学教案 推荐
- · 等比数列的前n项和教学设计1
- · 组合
- · 排列、组合、二项式定理-基本原理
- · 数学教案-不等式的性质(二)
- · 数学教案-不等式的证明(二)
- · 数学教案-双曲线的几何性质
- · 研究性课题与实习作业:线性规划的实际应用
- · 算术平均数与几何平均数
- · 不等式的证明(一)
- · 复数的乘法与除法
- · 不等式的性质(三)
- · 算术平均数与几何平均数--探究活动
- · 直线的倾斜角和斜率
- · 直线的倾斜角和斜率1
- · 复数的向量表示
- · 复数的有关概念
- · 圆的方程
- · 曲线和方程
- · 简单的线性规划2
- · 简单的线性规划1
- · 直线的方程
- · 数学教案-简单的线性规划(一)
- · 不等式的解法举例
- · 不等式的证实3
- · 不等式的证实1
- · 算术平均数与几何平均数2