算术平均数与几何平均数2
一路求学网 http://www.16qiuxue.com 阅览次数: 749次 12-28 20:02:22
标签:人教版高二数学教案范文,高二数学导数教案,http://www.16qiuxue.com
算术平均数与几何平均数2,
一、教材分析
(一)教材所处的地位和作用
“算术平均数与几何平均数”是全日制普通高级中学教科书(试验修订本·必修)数学第二册(上)“不等式”一章的内容,是在学完不等式性质的基础上对不等式的进一步研究.本节内容具有变通灵活性、应用广泛性、条件约束性等特点,所以本节内容是培养学生应用数学知识,灵活解决实际问题,学数学用数学的好素材二同时本节知识又渗透了数形结合、化归等重要数学思想,所以有利于培养学生良好的思维品质.
(二)教学目标
1.知识目标:理解两个实数的平方和不小于它们之积的2倍的重要不等式的证实及其几何解释;把握两个正数的算术平均数不小于它们的几何平均数定理的证实及其几何解释;把握应用平均值定理解决一些简单的应用问题.
2.能力目标:培养学生数形结合、化归等数学思想.
(三)教学重点、难点、关键
重点:用平均值定理求某些函数的最值及有关的应用问题.
难点:定理的使用条件,合理地应用平均值定理.
关键:理解定理的约束条件,把握化归的数学思想是突破重点和难点的关键.
(四)教材处理
依据新大纲和新教材,本节分为二个课时进行教学.第一课时讲解不等式(两个实数的平方和不小于它们之积的2倍)和平均值定理及它们的几何解释.把握应用定理解决某些数学问题.第二课时讲解应用平均值定理解决某些实际问题.为了讲好平均值定理这节内容,在紧扣新教材的前提下,对例题作适当的调整,适当增加例题.
二、教法分析
(-)教学方法
为了激发学生学习的主体意识,又有利于教师引导学生学习,培养学生的数学能力与创新能力,使学生能独立实现学习目标.在探索结论时,采用发现法教学;在定理的应用及其条件的教学中采用归纳法;在练习部分,主要采用讲练结合法进行.
(二)教学手段
根据本节知识特点,为突出重点,突破难点,增加教学容量,利用计算机辅导教学.
三、教学过程设计
6.2算术平均数与几何平均数(第一课时)
(一)导入新课
(教师活动)1.教师打出字幕(提出问题);2.组织学生讨论,并点评.
(学生活动)学生分组讨论,解决问题.
[字幕] 某种商品分两次降价,降价的方案有三种:方案甲是第一次9折销售,第二次再8折销售;方案乙是第一次8折销售,第二次再9折销售;方案丙是两次都是 折销售.试问降价最少的方案是哪一种?
[讨论]
①设物价为t元,三种降价方案的销售物价分别是:
方案甲: (元);
方案乙: (元);
方案丙: (元).
故降价最少的方案是丙.
②若将问题变为第一次a折销售,第二次b折销售.显然可猜想有不等式 成立,即 ,当 时,
设计意图:提出一个商品降价问题,要求学生讨论哪一种方案降价最少.学生对问题的背景较熟悉,可能感爱好,从而达到说明学习本节知识的必要,激发学生求知欲望,合理引出新课.
(二)新课讲授
尝试探索,建立新知
(教师活动)打出字幕(重要不等式),引导学生分析、思考,讲解重要不等式的证实.点评有关问题.
(学生活动)参与研究重要不等式的证实,理解有关概念.
[字幕]假如 ,那么 (当且仅当 时取“=”号).
证实:见课本
[点评]
①强调 的充要条件是
②解释“当且仅当”是充要条件的表达方式(“当”表示条件是充分的,“仅当”表示条件是必要的).
③几何解释,如图。
[字幕]定理 假如a,b是正数,那么 (当且仅当 时取“=”号).
证实:学生运用“ ”自己证实.
[点评]
①强调;
②解释“算术平均数”和“几何平均数”的概念,并叙述它们之间的关系;
②比较上述两个不等式的特征(强调它们的限制条件);
④几何解释(见课本);
@指出定理可推广为“n个( )正数的算术平均数不小干它们的几何平均数”.
设计意图:加深对重要不等式的熟悉和理解;培养学生数形结合的思想方法和对比的数学思想,多方面思考问题的能力.
例题示范,学会应用
(教师活动)教师打出字幕(例题),引导学生分析,研究问题,点拨正确运用定理,构建证题思路.
(学生活动)与教师一道完成问题的论证.
[字幕]例题已知 a,b,c,d都是正数,求证:
[分析]
①应用定理证实;
②研究问题与定理之间的联系;
③注重应用定理的条件和应用不等式的性质.
证实:见课本.
设计意图:巩固对定理的理解,学会应用定理解决某些数学问题.
课堂练习
(教师活动)打出字幕(练习),要求学生独立思考,完成练习;巡视学生解题情况,对正确的解法给予肯定和鼓励,对偏差给予纠正;请甲、乙两学生板演;点评练习解法.
(学生活动)在笔记本上完成练习,甲、动两位同学板演.
[字幕]练习:已知 都是正数,求证:
(1) ;
(2)
设计意图:把握定理及应用,反馈课堂教学效果,调节课堂教学.
分析归纳、小结解法
(教师活动)分析归纳例题和练习的解题过程,小结应用定理解决有关数学问题的解题方法.
(学生活动)与教师一道分析归纳,小结解题方法,并记录在笔记本上.
1.重要不等式可以用来证实某些不等式.
2.应用重要不等式证实不等式时要注重不等式的结构特征:①满足定理的条件;②不等式一边为和的形式,另一边为积或常数的形式.
3.用重要不等式证实有关不等式时注重与不等式性质结合.
设计意图:培养学生分析归纳问题的能力,把握应用重要不等式解决有关数学问题的方
法.
(三)小结
(教师活动)教师小结本节课所学的知识要点.
(学生活动)与教师一道小结,并记录在笔记本上.
1.本节课学习了两个重要不等式及它们在解决数学问题中的应用.
2.注重:①两个重要不等式使用的条件;②不等式中“=”号成立的条件.
设计意图:培养学生对所学知识进行概括归纳的能力,巩固所学知识.
(四)布置作业
1.课本作业;习题 .1,3
2.思考题:已知 ,求证:
3.研究性题:设正数 , ,试尽可能多的给出含有a和b的两个元素的不等式.
设计意图:课本作业供学生巩固基础知识;思考题供学有余力的学生完成,灵活把握重要不等式的应用;研究性题是一道结论开放性题,培养学生创新意识.
(五)课后点评
1.导入新课采用学生比较熟悉的问题为背景,轻易被学生接受,产生爱好,激发学习动机.使得学生学习本节课知识自然且合理.
2.在建立新知过程中,教师力求引导、启发,让学生逐步回忆所学的知识,并应用它们来分析问题、解决问题,以形成比较系统和完整的知识结构.对有关概念使学生理解难确,尽量以多种形式反映知识结构,使学生在比较中得到深刻理解.
,算术平均数与几何平均数2
算术平均数与几何平均数2
第一课时一、教材分析
(一)教材所处的地位和作用
“算术平均数与几何平均数”是全日制普通高级中学教科书(试验修订本·必修)数学第二册(上)“不等式”一章的内容,是在学完不等式性质的基础上对不等式的进一步研究.本节内容具有变通灵活性、应用广泛性、条件约束性等特点,所以本节内容是培养学生应用数学知识,灵活解决实际问题,学数学用数学的好素材二同时本节知识又渗透了数形结合、化归等重要数学思想,所以有利于培养学生良好的思维品质.
(二)教学目标
1.知识目标:理解两个实数的平方和不小于它们之积的2倍的重要不等式的证实及其几何解释;把握两个正数的算术平均数不小于它们的几何平均数定理的证实及其几何解释;把握应用平均值定理解决一些简单的应用问题.
2.能力目标:培养学生数形结合、化归等数学思想.
(三)教学重点、难点、关键
重点:用平均值定理求某些函数的最值及有关的应用问题.
难点:定理的使用条件,合理地应用平均值定理.
关键:理解定理的约束条件,把握化归的数学思想是突破重点和难点的关键.
(四)教材处理
依据新大纲和新教材,本节分为二个课时进行教学.第一课时讲解不等式(两个实数的平方和不小于它们之积的2倍)和平均值定理及它们的几何解释.把握应用定理解决某些数学问题.第二课时讲解应用平均值定理解决某些实际问题.为了讲好平均值定理这节内容,在紧扣新教材的前提下,对例题作适当的调整,适当增加例题.
二、教法分析
(-)教学方法
为了激发学生学习的主体意识,又有利于教师引导学生学习,培养学生的数学能力与创新能力,使学生能独立实现学习目标.在探索结论时,采用发现法教学;在定理的应用及其条件的教学中采用归纳法;在练习部分,主要采用讲练结合法进行.
(二)教学手段
根据本节知识特点,为突出重点,突破难点,增加教学容量,利用计算机辅导教学.
三、教学过程设计
6.2算术平均数与几何平均数(第一课时)
(一)导入新课
(教师活动)1.教师打出字幕(提出问题);2.组织学生讨论,并点评.
(学生活动)学生分组讨论,解决问题.
[字幕] 某种商品分两次降价,降价的方案有三种:方案甲是第一次9折销售,第二次再8折销售;方案乙是第一次8折销售,第二次再9折销售;方案丙是两次都是 折销售.试问降价最少的方案是哪一种?
[讨论]
①设物价为t元,三种降价方案的销售物价分别是:
方案甲: (元);
方案乙: (元);
方案丙: (元).
故降价最少的方案是丙.
②若将问题变为第一次a折销售,第二次b折销售.显然可猜想有不等式 成立,即 ,当 时,
设计意图:提出一个商品降价问题,要求学生讨论哪一种方案降价最少.学生对问题的背景较熟悉,可能感爱好,从而达到说明学习本节知识的必要,激发学生求知欲望,合理引出新课.
(二)新课讲授
尝试探索,建立新知
(教师活动)打出字幕(重要不等式),引导学生分析、思考,讲解重要不等式的证实.点评有关问题.
(学生活动)参与研究重要不等式的证实,理解有关概念.
[字幕]假如 ,那么 (当且仅当 时取“=”号).
证实:见课本
[点评]
①强调 的充要条件是
②解释“当且仅当”是充要条件的表达方式(“当”表示条件是充分的,“仅当”表示条件是必要的).
③几何解释,如图。
[字幕]定理 假如a,b是正数,那么 (当且仅当 时取“=”号).
证实:学生运用“ ”自己证实.
[点评]
①强调;
②解释“算术平均数”和“几何平均数”的概念,并叙述它们之间的关系;
②比较上述两个不等式的特征(强调它们的限制条件);
④几何解释(见课本);
@指出定理可推广为“n个( )正数的算术平均数不小干它们的几何平均数”.
设计意图:加深对重要不等式的熟悉和理解;培养学生数形结合的思想方法和对比的数学思想,多方面思考问题的能力.
例题示范,学会应用
(教师活动)教师打出字幕(例题),引导学生分析,研究问题,点拨正确运用定理,构建证题思路.
(学生活动)与教师一道完成问题的论证.
[字幕]例题已知 a,b,c,d都是正数,求证:
[分析]
①应用定理证实;
②研究问题与定理之间的联系;
③注重应用定理的条件和应用不等式的性质.
证实:见课本.
设计意图:巩固对定理的理解,学会应用定理解决某些数学问题.
课堂练习
(教师活动)打出字幕(练习),要求学生独立思考,完成练习;巡视学生解题情况,对正确的解法给予肯定和鼓励,对偏差给予纠正;请甲、乙两学生板演;点评练习解法.
(学生活动)在笔记本上完成练习,甲、动两位同学板演.
[字幕]练习:已知 都是正数,求证:
(1) ;
(2)
设计意图:把握定理及应用,反馈课堂教学效果,调节课堂教学.
分析归纳、小结解法
(教师活动)分析归纳例题和练习的解题过程,小结应用定理解决有关数学问题的解题方法.
(学生活动)与教师一道分析归纳,小结解题方法,并记录在笔记本上.
1.重要不等式可以用来证实某些不等式.
2.应用重要不等式证实不等式时要注重不等式的结构特征:①满足定理的条件;②不等式一边为和的形式,另一边为积或常数的形式.
3.用重要不等式证实有关不等式时注重与不等式性质结合.
设计意图:培养学生分析归纳问题的能力,把握应用重要不等式解决有关数学问题的方
法.
(三)小结
(教师活动)教师小结本节课所学的知识要点.
(学生活动)与教师一道小结,并记录在笔记本上.
1.本节课学习了两个重要不等式及它们在解决数学问题中的应用.
2.注重:①两个重要不等式使用的条件;②不等式中“=”号成立的条件.
设计意图:培养学生对所学知识进行概括归纳的能力,巩固所学知识.
(四)布置作业
1.课本作业;习题 .1,3
2.思考题:已知 ,求证:
3.研究性题:设正数 , ,试尽可能多的给出含有a和b的两个元素的不等式.
设计意图:课本作业供学生巩固基础知识;思考题供学有余力的学生完成,灵活把握重要不等式的应用;研究性题是一道结论开放性题,培养学生创新意识.
(五)课后点评
1.导入新课采用学生比较熟悉的问题为背景,轻易被学生接受,产生爱好,激发学习动机.使得学生学习本节课知识自然且合理.
2.在建立新知过程中,教师力求引导、启发,让学生逐步回忆所学的知识,并应用它们来分析问题、解决问题,以形成比较系统和完整的知识结构.对有关概念使学生理解难确,尽量以多种形式反映知识结构,使学生在比较中得到深刻理解.
,算术平均数与几何平均数2
《算术平均数与几何平均数2》相关文章
- › 算术平均数与几何平均数
- › 算术平均数与几何平均数--探究活动
- › 算术平均数与几何平均数2
- tag: 平均数 高二数学教案,人教版高二数学教案范文,高二数学导数教案,优秀教案 - 数学教案 - 高二数学教案
网友评论>>
栏目分类
高二数学教案 推荐
- · 等比数列的前n项和教学设计1
- · 组合
- · 排列、组合、二项式定理-基本原理
- · 数学教案-不等式的性质(二)
- · 数学教案-不等式的证明(二)
- · 数学教案-双曲线的几何性质
- · 研究性课题与实习作业:线性规划的实际应用
- · 算术平均数与几何平均数
- · 不等式的证明(一)
- · 复数的乘法与除法
- · 不等式的性质(三)
- · 算术平均数与几何平均数--探究活动
- · 直线的倾斜角和斜率
- · 直线的倾斜角和斜率1
- · 复数的向量表示
- · 复数的有关概念
- · 圆的方程
- · 曲线和方程
- · 简单的线性规划2
- · 简单的线性规划1
- · 直线的方程
- · 数学教案-简单的线性规划(一)
- · 不等式的解法举例
- · 不等式的证实3
- · 不等式的证实1
- · 算术平均数与几何平均数2