曲线和方程
一路求学网 http://www.16qiuxue.com 阅览次数: 771次 12-28 20:02:22
标签:人教版高二数学教案范文,高二数学导数教案,http://www.16qiuxue.com
曲线和方程,
(1)建立适当的坐标系,用有序实数对例如 表示曲线上任意一点 的坐标;
(2)写出适合条件 的点 的集合
;
(3)用坐标表示条件 ,列出方程 ;
(4)化方程 为最简形式;
(5)证实以化简后的方程的解为坐标的点都是曲线上的点.
一般情况下,求解过程已表明曲线上的点的坐标都是方程的解;假如求解过程中的转化都是等价的,那么逆推回去就说明以方程的解为坐标的点都是曲线上的点.所以,通常情况下证实可省略,不过非凡情况要说明.
上述五个步骤可简记为:建系设点;写出集合;列方程;化简;修正.
下面再看一个问题:
例3:已知一条曲线在 轴的上方,它上面的每一点到 点的距离减去它到 轴的距离的差都是2,求这条曲线的方程.
动画演示用几何画板演示曲线生成的过程和外形,在运动变化的过程中寻找关系.
解:设点 是曲线上任意一点, 轴,垂足是 (如图2),那么点 属于集合
由距离公式,点 适合的条件可表示为
①
将①式 移项后再两边平方,得
化简得
由题意,曲线在 轴的上方,所以 ,虽然原点 的坐标(0,0)是这个方程的解,但不属于已知曲线,所以曲线的方程应为 ,它是关于 轴对称的抛物线,但不包括抛物线的顶点,如图2中所示.
练习巩固
题目:在正三角形 内有一动点 ,已知 到三个顶点的距离分别为 、 、 ,且有 ,求点 轨迹方程.
分析、略解:首先应建立坐标系,以正三角形一边所在的直线为一个坐标轴,这条边的垂直平分线为另一个轴,建立直角坐标系比较简单,如图3所示.设 、 的坐标为 、 ,则 的坐标为 , 的坐标为 .
根据条件 ,代入坐标可得
化简得
①
由于题目中要求点 在三角形内,所以 ,在结合①式可进一步求出 、 的范围,最后曲线方程可表示为
小结师生共同总结:
(1)解析几何研究研究问题的方法是什么?
(2)如何求曲线的方程?
(3)请对求解曲线方程的五个步骤进行评价.各步骤的作用,哪步重要,哪步应注重什么?
作业课本第72页练习1,2,3;
板书设计
§7.6 求曲线的方程
坐标法:
解析几何:
基本问题:
(1)
(2)
例1:
例2:
求曲线方程的步骤:
例3
练习:
小结:
作业:
,曲线和方程
(1)建立适当的坐标系,用有序实数对例如 表示曲线上任意一点 的坐标;
(2)写出适合条件 的点 的集合
;
(3)用坐标表示条件 ,列出方程 ;
(4)化方程 为最简形式;
(5)证实以化简后的方程的解为坐标的点都是曲线上的点.
一般情况下,求解过程已表明曲线上的点的坐标都是方程的解;假如求解过程中的转化都是等价的,那么逆推回去就说明以方程的解为坐标的点都是曲线上的点.所以,通常情况下证实可省略,不过非凡情况要说明.
上述五个步骤可简记为:建系设点;写出集合;列方程;化简;修正.
下面再看一个问题:
例3:已知一条曲线在 轴的上方,它上面的每一点到 点的距离减去它到 轴的距离的差都是2,求这条曲线的方程.
动画演示用几何画板演示曲线生成的过程和外形,在运动变化的过程中寻找关系.
解:设点 是曲线上任意一点, 轴,垂足是 (如图2),那么点 属于集合
由距离公式,点 适合的条件可表示为
①
将①式 移项后再两边平方,得
化简得
由题意,曲线在 轴的上方,所以 ,虽然原点 的坐标(0,0)是这个方程的解,但不属于已知曲线,所以曲线的方程应为 ,它是关于 轴对称的抛物线,但不包括抛物线的顶点,如图2中所示.
练习巩固
题目:在正三角形 内有一动点 ,已知 到三个顶点的距离分别为 、 、 ,且有 ,求点 轨迹方程.
分析、略解:首先应建立坐标系,以正三角形一边所在的直线为一个坐标轴,这条边的垂直平分线为另一个轴,建立直角坐标系比较简单,如图3所示.设 、 的坐标为 、 ,则 的坐标为 , 的坐标为 .
根据条件 ,代入坐标可得
化简得
①
由于题目中要求点 在三角形内,所以 ,在结合①式可进一步求出 、 的范围,最后曲线方程可表示为
小结师生共同总结:
(1)解析几何研究研究问题的方法是什么?
(2)如何求曲线的方程?
(3)请对求解曲线方程的五个步骤进行评价.各步骤的作用,哪步重要,哪步应注重什么?
作业课本第72页练习1,2,3;
板书设计
§7.6 求曲线的方程
坐标法:
解析几何:
基本问题:
(1)
(2)
例1:
例2:
求曲线方程的步骤:
例3
练习:
小结:
作业:
,曲线和方程
《曲线和方程》相关文章
- › 曲线和方程
- tag: 暂无联系方式 高二数学教案,人教版高二数学教案范文,高二数学导数教案,优秀教案 - 数学教案 - 高二数学教案
网友评论>>
栏目分类
高二数学教案 推荐
- · 等比数列的前n项和教学设计1
- · 组合
- · 排列、组合、二项式定理-基本原理
- · 数学教案-不等式的性质(二)
- · 数学教案-不等式的证明(二)
- · 数学教案-双曲线的几何性质
- · 研究性课题与实习作业:线性规划的实际应用
- · 算术平均数与几何平均数
- · 不等式的证明(一)
- · 复数的乘法与除法
- · 不等式的性质(三)
- · 算术平均数与几何平均数--探究活动
- · 直线的倾斜角和斜率
- · 直线的倾斜角和斜率1
- · 复数的向量表示
- · 复数的有关概念
- · 圆的方程
- · 曲线和方程
- · 简单的线性规划2
- · 简单的线性规划1
- · 直线的方程
- · 数学教案-简单的线性规划(一)
- · 不等式的解法举例
- · 不等式的证实3
- · 不等式的证实1
- · 算术平均数与几何平均数2