直线的倾斜角和斜率1
一路求学网 http://www.16qiuxue.com 阅览次数: 420次 12-28 20:02:22
标签:人教版高二数学教案范文,高二数学导数教案,http://www.16qiuxue.com
直线的倾斜角和斜率1,
学生:在练习本上画出直线,写出方程.
30° ?à =
45° ?à =
135°?à =
(注:学生对于写出倾斜角是45°、135°的直线方程不会困难,但对于倾斜角是30°可能有困难,此时可启发学生借用三角函数中的30°角终边与单位圆的交点坐标来解决.)
演示动画
观察直线变化,倾斜角变化,直线方程中 系数变化的关系
(1) 直线变化→α变化→ 中的 系数 变化 (同时注重 α的变化).
(2) 中的x系数k变化→直线变化→α变化 (同时注重 α的变化).
教师引导学生观察,归纳,猜想出倾斜角与 的系数的关系:倾斜角不同,方程中 的系数不同,而且这个系数正是倾斜角的正切!
板书
定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.记作 ,即 .
这样我们定义了一个从“形”的方面刻画直线相对于 轴(正方向)倾斜程度的量——倾斜角,现在我们又定义一个从“数”的方面刻画直线相对于 轴(正方向)倾斜程度的量——斜率.
指出下列直线的倾斜角和斜率:
(1) = (2) = tg60° (3) = tg(30°)
学生思考后回答,师生一起订正:(1)120°; (2)60°;(3)150°(为什么不是30°呢?)
画图,指出倾斜角和斜率.
结合图3(也可以演示动画),观察倾斜角变化时,斜率的变化情况.
注重:当倾斜角为90°时,斜率不存在.
α=0° ?à =0
0°<α<90° ?à >0
α=90° ?à 不存在
90°<α<180°?à <0
(四)直线过两点斜率公式的推导
问题4
假如给定直线的倾斜角,我们当然可以根据斜率的定义 =tgα求出直线的斜率;
假如给定直线上两点坐标,直线是确定的,倾斜角也是确定的,斜率就是确定的,那么又怎么求出直线的斜率呢?
即已知两点P1(x1,y1)、P2(x2,y2)(其中x1≠x2),求直线P1P2的斜率.
思路分析:
首先由学生提出思路,教师启发、引导:
运用正切定义,解决问题.
(1)正切函数定义是什么?(终边上任一点的纵坐标比横坐标.)
(2)角α是“标准位置”吗?(不是.)
(3)如何把角α放在“标准位置”?(平移向量 ,使P1与原点重合,得到新向量 .)
(4)P的坐标是多少?(x2x1,y2y1)
(5)直线的斜率是多少? =tgα= (x1≠x2)
(6)假如P1 和P2的顺序不同,结果还一样吗?(一样).
评价:注重公式中x1≠x2,即直线P1 P2不垂直x轴.因此当直线P1P2不垂直x轴时,由已知直线上任意两点的坐标可以求得斜率,而不需要求出倾斜角.
练习
(1)直线的倾斜角为α,则直线的斜率为 α?
(2)任意直线有倾斜角,则任意直线都有斜率?
(3)直线 (330°)的倾斜角和斜率分别是多少?
(4)求经过两点 (0,0)、 (1, )直线的倾斜角和斜率.
(5)课本第37页练习第2、4题.
教师巡视,观察学生情况,个别辅导,订正答案(答案略).
总结
教师引导:首先回顾前边提出的问题是否都已解决.再看下边的问题:
(1)直线倾斜角的概念要注重什么?
(2)直线的倾斜角与斜率是一一对应吗?
(3)已知两点坐标,如何求直线的斜率?斜率公式中脚标1和2有顺序吗?
学生边讨论边总结:
(1)向上的方向,正方向,最小,正角.(2)不是,当α=90°时, α不存在.
(3) = ( ),没有.
作业
1.课本第37页习题7.1第3、4、5题.
2.思考题
(1)方程 是单位圆的方程吗?
(2)你能说出过原点,倾斜角是45°的直线方程吗?
(3)你能说出过原点,斜率是2的直线方程吗?
(4)你能说出过(1,1)点,斜率是2的直线方程吗?
板书设计
7.1直线的倾斜角和斜率
一、直线方程
二、直线的倾斜角
三、直线的斜率
四、斜率公式
练习
小结
作业
,直线的倾斜角和斜率1
学生:在练习本上画出直线,写出方程.
30° ?à =
45° ?à =
135°?à =
(注:学生对于写出倾斜角是45°、135°的直线方程不会困难,但对于倾斜角是30°可能有困难,此时可启发学生借用三角函数中的30°角终边与单位圆的交点坐标来解决.)
演示动画
观察直线变化,倾斜角变化,直线方程中 系数变化的关系
(1) 直线变化→α变化→ 中的 系数 变化 (同时注重 α的变化).
(2) 中的x系数k变化→直线变化→α变化 (同时注重 α的变化).
教师引导学生观察,归纳,猜想出倾斜角与 的系数的关系:倾斜角不同,方程中 的系数不同,而且这个系数正是倾斜角的正切!
板书
定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.记作 ,即 .
这样我们定义了一个从“形”的方面刻画直线相对于 轴(正方向)倾斜程度的量——倾斜角,现在我们又定义一个从“数”的方面刻画直线相对于 轴(正方向)倾斜程度的量——斜率.
指出下列直线的倾斜角和斜率:
(1) = (2) = tg60° (3) = tg(30°)
学生思考后回答,师生一起订正:(1)120°; (2)60°;(3)150°(为什么不是30°呢?)
画图,指出倾斜角和斜率.
结合图3(也可以演示动画),观察倾斜角变化时,斜率的变化情况.
注重:当倾斜角为90°时,斜率不存在.
α=0° ?à =0
0°<α<90° ?à >0
α=90° ?à 不存在
90°<α<180°?à <0
(四)直线过两点斜率公式的推导
问题4
假如给定直线的倾斜角,我们当然可以根据斜率的定义 =tgα求出直线的斜率;
假如给定直线上两点坐标,直线是确定的,倾斜角也是确定的,斜率就是确定的,那么又怎么求出直线的斜率呢?
即已知两点P1(x1,y1)、P2(x2,y2)(其中x1≠x2),求直线P1P2的斜率.
思路分析:
首先由学生提出思路,教师启发、引导:
运用正切定义,解决问题.
(1)正切函数定义是什么?(终边上任一点的纵坐标比横坐标.)
(2)角α是“标准位置”吗?(不是.)
(3)如何把角α放在“标准位置”?(平移向量 ,使P1与原点重合,得到新向量 .)
(4)P的坐标是多少?(x2x1,y2y1)
(5)直线的斜率是多少? =tgα= (x1≠x2)
(6)假如P1 和P2的顺序不同,结果还一样吗?(一样).
评价:注重公式中x1≠x2,即直线P1 P2不垂直x轴.因此当直线P1P2不垂直x轴时,由已知直线上任意两点的坐标可以求得斜率,而不需要求出倾斜角.
练习
(1)直线的倾斜角为α,则直线的斜率为 α?
(2)任意直线有倾斜角,则任意直线都有斜率?
(3)直线 (330°)的倾斜角和斜率分别是多少?
(4)求经过两点 (0,0)、 (1, )直线的倾斜角和斜率.
(5)课本第37页练习第2、4题.
教师巡视,观察学生情况,个别辅导,订正答案(答案略).
总结
教师引导:首先回顾前边提出的问题是否都已解决.再看下边的问题:
(1)直线倾斜角的概念要注重什么?
(2)直线的倾斜角与斜率是一一对应吗?
(3)已知两点坐标,如何求直线的斜率?斜率公式中脚标1和2有顺序吗?
学生边讨论边总结:
(1)向上的方向,正方向,最小,正角.(2)不是,当α=90°时, α不存在.
(3) = ( ),没有.
作业
1.课本第37页习题7.1第3、4、5题.
2.思考题
(1)方程 是单位圆的方程吗?
(2)你能说出过原点,倾斜角是45°的直线方程吗?
(3)你能说出过原点,斜率是2的直线方程吗?
(4)你能说出过(1,1)点,斜率是2的直线方程吗?
板书设计
7.1直线的倾斜角和斜率
一、直线方程
二、直线的倾斜角
三、直线的斜率
四、斜率公式
练习
小结
作业
,直线的倾斜角和斜率1
- ·上一篇:复数的向量表示
- ·下一篇:英语教案-Welcome back to school 第四课时
《直线的倾斜角和斜率1》相关文章
- › 直线的倾斜角和斜率
- › 直线的倾斜角和斜率1
- tag: 暂无联系方式 高二数学教案,人教版高二数学教案范文,高二数学导数教案,优秀教案 - 数学教案 - 高二数学教案
网友评论>>
栏目分类
高二数学教案 推荐
- · 等比数列的前n项和教学设计1
- · 组合
- · 排列、组合、二项式定理-基本原理
- · 数学教案-不等式的性质(二)
- · 数学教案-不等式的证明(二)
- · 数学教案-双曲线的几何性质
- · 研究性课题与实习作业:线性规划的实际应用
- · 算术平均数与几何平均数
- · 不等式的证明(一)
- · 复数的乘法与除法
- · 不等式的性质(三)
- · 算术平均数与几何平均数--探究活动
- · 直线的倾斜角和斜率
- · 直线的倾斜角和斜率1
- · 复数的向量表示
- · 复数的有关概念
- · 圆的方程
- · 曲线和方程
- · 简单的线性规划2
- · 简单的线性规划1
- · 直线的方程
- · 数学教案-简单的线性规划(一)
- · 不等式的解法举例
- · 不等式的证实3
- · 不等式的证实1
- · 算术平均数与几何平均数2