分式的乘除法教案
一路求学网 http://www.16qiuxue.com 阅览次数: 503次 12-28 20:07:03
标签:八年级数学下册教案范文,八年级数学上册教案,http://www.16qiuxue.com 分式的乘除法教案,
分式的乘除法教案
教学目标(一)教学知识点
1.分式乘除法的运算法则,
2.会进行分式的乘除法的运算.
(二)能力训练要求
1.类比分数乘除法的运算法则.探索分式乘除法的运算法则.
2.在分式乘除法运算过程中,体会因式分解在分式乘除法中的作用,发展有条理的思考和语言表达能力.
3.用分式的乘除法解决生活中的实际问题,提高"用数学"的意识.
(三)情感与价值观要求
1.通过师生共同交流、探讨,使学生在掌握知识的基础上,认识事物之间的内在联系,获得成就感.
2.培养学生的创新意识和应用数学的意识.
教学重点
让学生掌握分式乘除法的法则及其应用.
教学难点
分子、分母是多项式的分式的乘除法的运算.
教学方法
引导、启发、探求
教具准备
投影片四张
第一张:探索、交流,(记作§3.2 A);
第二张:例1,(记作§3.2 B);
第三张:例2,(记作§3.2 C);
第四张:做一做,(记作§3.2 D).
教学过程
Ⅰ.创设情境,引入新课
[师]上节课,我们学习了分式的基本性质,我们可以发现它与分数的基本性质类似,那么分式的运算是否也和分数的运算类似呢?下面我们看投影片(§3.2 A)
探索、交流--观察下列算式:
× = , × = ,
÷ = × = , ÷ = × = .
猜一猜 × =? ÷ =?与同伴交流.
[生]观察上面运算,可知:
两个分数相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;
两个分数相除,把除数的分子和分母颠倒位置后,再与被除数相乘.
即 × = ;
÷ = × = .
这里字母a,b,c,d都是整数,但a,c,d不为零.
[师]如果让字母代表整式,那么就得到类似于分数的分式的乘除法.
Ⅱ.讲授新课
1.分式的乘除法法则
[师生共析]分式的乘除法法则与分数的乘除法法则类似:
两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;
两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.
2.例题讲解
出示投影片(§3.2 B)
[例1]计算:
(1) · ;(2) · .
分析:(1)将算式对照乘除法运算法则,进行运算;(2)强调运算结果如不是最简分式时,一定要进行约分,使运算结果化为最简分式.
解:(1) · =
= = ;
(2) ·
= = .
出示投影片(§3.2 C)
[例2]计算:
(1)3xy2÷ ;(2) ÷
分析:(1)将算式对照分式的除法运算法则,进行运算;(2)当分子、分母是多项式时,一般应先分解因式,并在运算过程中约分,可以使运算简化,避免走弯路.
解:(1)3xy2÷ =3xy2·
= = x2;
(2) ÷
= ×
=
=
=
3.做一做
出示投影片(§3.2 D)
通常购买同一品种的西瓜时,西瓜的质量越大,花费的钱越多.因此人们希望西瓜瓤占整个西瓜的比例越大越好.假如我们把西瓜都看成球形,并把西瓜瓤的密度看成是均匀的,西瓜的皮厚都是d,已知球的体积公式为V= πR3(其中R为球的半径),那么
(1)西瓜瓤与整个西瓜的体积各是多少?
(2)西瓜瓤与整个西瓜的体积比是多少?
(3)买大西瓜合算还是买小西瓜合算?
[师]夏天快到了,你一定想买一个又大又甜又合算的大西瓜.赶快思考上面的问题,相信你一定会感兴趣的.
[生]我们不妨设西瓜的半径为R,根据题意,可得:
(1)整个西瓜的体积为V1= πR3;
西瓜瓤的体积为V2= π(R-d)3.
(2)西瓜瓤与整个西瓜的体积比为:
= =
=( )3=(1- )3.
(3)我认为买大西瓜合算.
由 =(1- )3可知,R越大,即西瓜越大, 的值越小,(1- )的值越大,(1- )3也越大,则 的值也越大,即西瓜瓤占整个西瓜的体积比也越大,因此,买大西瓜更合算.
Ⅲ.随堂练习
1.计算:(1) · ;(2)(a2-a)÷ ;(3) ÷
2.化简:
(1) ÷ ;
(2)(ab-b2)÷
解:1.(1) · = = = ;
(2)(a2-a)÷ =(a2-a)×
= =(a-1)2
=a2-2a+1
(3) ÷ = ×
= =(x-1)y=xy-y.
2.(1) ÷
= ×
=
=(x-2)(x+2)=x2-4.
(2)(ab-b2)÷
=(ab-b2)× =
=b.
Ⅳ.课时小结
[师]同学们这节课有何收获呢?
[生]我们学习分式的基本性质可以发现它类似于分数的基本性质.今天,我们学习分式的乘除法的运算法则,也类似于分数乘除法的运算法则.我们以后对于分式的学习是否也类似于分数,加以推广便可.
[师]很好!其实,数学历史的发展就是不断地将原有的知识加以推广和扩展.
[生]今天我们学习了一种新的运算,能运用因式分解将分子、分母是多项式的分式乘或除,我觉得我们很了不起.
……
Ⅴ.课后作业
1.习题3.3的第1、2题.
2.通过习题总结分式的乘方运算.
Ⅵ.活动与探究
已知a2+3a+1=0,求
(1)a+ ;(2)a2+ ;
(3)a3+ ;(4)a4+
[过程] 根据题意可知a≠0,观察所求四个式子不难发现只要求出(1),其他便可迎刃而解.因为a2+3a+1=0,a≠0,所以a2+3a+1=0两边同除以a,得a+3+ =0,a+ =-3.
[结果]因为a2+3a+1=0,a≠0,
(1)a2+3a+1=0两边同除以a,得
a+3+ =0,a+ =-3;
(2)a2+ =(a+ )2-2=(-3)2-2=7;
(3)a3+ =(a+ )(a2+ -1)=(-3)×(7-1)=-18;
(4)a4+ =(a2+ )2-2=72-2=47.
板书设计
§3.2 分式的乘除法
一、运算法则:
× = ; ÷ = × = .
(其中a、c、d是不为零的整式, , 是分式).
二、应用,升华
[例1](1) · ;(2) · .
分析:(1)对照分式乘法的运算法则.
(2)运算的结果要化简.
(3)分子、分母如果是多项式,应先分解因式,可以使运算少走弯路.
[例2](1)3xy2÷ ;
(2) ÷
(略)
,分式的乘除法教案
网友评论>>
栏目分类
八年级数学教案 推荐
- · 因式分解复习教案
- · 轴对称教案1
- · 全等三角形的应用教学设计
- · 用坐标表示轴对称教案
- · 等腰三角形性质说课稿
- · 作轴对称图形教案1
- · 轴对称教案4
- · 轴对称教案3
- · 多边形的内角和教案3
- · 多边形的内角和教案2
- · 三角形的内角和
- · 全等三角形
- · 菱形教案1
- · 分 式
- · 分式的加减法
- · 关于三角形的一些概念
- · 三角形三条边的关系
- · 梯形教案
- · 中心对称和中心对称图形
- · 正方形探索式教学
- · 正方形教学示例
- · 最简二次根式 教学设计示例4
- · 分式的乘除法教案
- · 分式方程教案1
- · 分式方程教案2
- · 反比例函数的图象与性质教案1