整式的除法教案1
一路求学网 http://www.16qiuxue.com 阅览次数: 817次 12-28 20:02:22
标签:八年级数学下册教案范文,八年级数学上册教案,http://www.16qiuxue.com
整式的除法教案1,
教学目标 单项式除以单项式和多项式除以单项式的运算法则及其应用和它们的运算算理,发展有条理的思考及表达能力,提倡多样化的算法,培养学生的创新精神与能力.
教学重点 单项式除以单项式和多项式除以单项式的运算法则及其应用
课时分配 2课时 班 级
教学过程
设计意图 第一课时
(一) 创设情境,感知新知
1. 问题:木星的质量约是1.90×1024吨.地球的质量约是5.08×1021吨.你知道木星 的质量约为地球质量的多少倍吗?
2. 学生分析【1】
3. 得到新知:.这是除法运算,木星的质量约为地球质量的(1.90×1024)÷(5.98×1021)倍.(1.90×1024)÷(5.98×1021)= =0.318×103
这也是本节课的研究方向:单项式除以单项式
(二) 学生动手,得到法则
1. 学生计算:仿照上述的计算方法,计算下列各式:【2】
8a3÷2a 5x3y÷3xy 12a3b2x3÷3ab2.
2. 分析特点:(1)单项式相除是在同底数幂的除法基础上进行的。(2)单项式除以单项式可以分为系数相除;同底数幂相除,只在被除式里含有的字母三部分运算.【3】
3. 得到结论:单项式相除,(1)系数相除,作为商的系数,
(2)同底数幂相除,
(3)对于只在被除数 式里含有的字母,连同它的指数作为商的一个因式。【4】
(三)巩固练习
例:(1)28x4y2÷7x3y (2)-5a5b3c÷15a4b
(3)(2x2y)3·(-7xy2)÷14x4y3 (4)5(2a+b)4÷(2a+b)2
练习:P162 练习1,2
设计意图 附加练习:
1.计算:
化简求值:求 的值,其中
(四)小结:
1.单项式的除法法则
2.应用单项式除法法则应注意:
①系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号;
②把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;
③被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;
④要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行.
作业
板书设计
教学反思 预习要点
设计意图 第二课时:
(一) 回顾单项式除以单项式法则
(二) 学生动手,探究新课
1. 计算下列各式:(1)(am+bm)÷m;(2)(a2+ab)÷a;(3)(4x2y+2xy2)÷2xy.
2. 提问:①说说你是怎样计算的 ②还有什么发现吗?
3. 分析:以(am+bm)÷m 为例:【1】
-------除法转化成乘法
= --------乘法分配律
(三) 总结法则
1. 多项式除以单项式:先把这个多项式的每一项除以这个单项式,再把所得的商相加.
2. 本质:把多项式除以单项式转化成单项式除以单项式【2】
(四) 解决问题【3】
例:(1)(12a3-6a2+3a)÷3a;
(2)(21x4y3-35x3y2+7x2y2)÷(-7x2y);
(3)[(x+y)2-y(2x+y)-8x]÷2x
练习:P163 练习1,2
化简求值:已知 ,求 的值
(五) 小结
1.单项式的除法法则
2.应用单项式除法法则应注意:
①系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号;
②把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;
③被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;
④要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行.
⑤多项式除以单项式法则 更多精品 资
,整式的除法教案1
整式的除法教案1
更多精品 资 课 题 §15.3.2整式的除法 时 间教学目标 单项式除以单项式和多项式除以单项式的运算法则及其应用和它们的运算算理,发展有条理的思考及表达能力,提倡多样化的算法,培养学生的创新精神与能力.
教学重点 单项式除以单项式和多项式除以单项式的运算法则及其应用
课时分配 2课时 班 级
教学过程
设计意图 第一课时
(一) 创设情境,感知新知
1. 问题:木星的质量约是1.90×1024吨.地球的质量约是5.08×1021吨.你知道木星 的质量约为地球质量的多少倍吗?
2. 学生分析【1】
3. 得到新知:.这是除法运算,木星的质量约为地球质量的(1.90×1024)÷(5.98×1021)倍.(1.90×1024)÷(5.98×1021)= =0.318×103
这也是本节课的研究方向:单项式除以单项式
(二) 学生动手,得到法则
1. 学生计算:仿照上述的计算方法,计算下列各式:【2】
8a3÷2a 5x3y÷3xy 12a3b2x3÷3ab2.
2. 分析特点:(1)单项式相除是在同底数幂的除法基础上进行的。(2)单项式除以单项式可以分为系数相除;同底数幂相除,只在被除式里含有的字母三部分运算.【3】
3. 得到结论:单项式相除,(1)系数相除,作为商的系数,
(2)同底数幂相除,
(3)对于只在被除数 式里含有的字母,连同它的指数作为商的一个因式。【4】
(三)巩固练习
例:(1)28x4y2÷7x3y (2)-5a5b3c÷15a4b
(3)(2x2y)3·(-7xy2)÷14x4y3 (4)5(2a+b)4÷(2a+b)2
练习:P162 练习1,2
设计意图 附加练习:
1.计算:
化简求值:求 的值,其中
(四)小结:
1.单项式的除法法则
2.应用单项式除法法则应注意:
①系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号;
②把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;
③被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;
④要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行.
作业
板书设计
教学反思 预习要点
设计意图 第二课时:
(一) 回顾单项式除以单项式法则
(二) 学生动手,探究新课
1. 计算下列各式:(1)(am+bm)÷m;(2)(a2+ab)÷a;(3)(4x2y+2xy2)÷2xy.
2. 提问:①说说你是怎样计算的 ②还有什么发现吗?
3. 分析:以(am+bm)÷m 为例:【1】
-------除法转化成乘法
= --------乘法分配律
(三) 总结法则
1. 多项式除以单项式:先把这个多项式的每一项除以这个单项式,再把所得的商相加.
2. 本质:把多项式除以单项式转化成单项式除以单项式【2】
(四) 解决问题【3】
例:(1)(12a3-6a2+3a)÷3a;
(2)(21x4y3-35x3y2+7x2y2)÷(-7x2y);
(3)[(x+y)2-y(2x+y)-8x]÷2x
练习:P163 练习1,2
化简求值:已知 ,求 的值
(五) 小结
1.单项式的除法法则
2.应用单项式除法法则应注意:
①系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号;
②把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;
③被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;
④要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行.
⑤多项式除以单项式法则 更多精品 资
,整式的除法教案1
《整式的除法教案1》相关文章
网友评论>>
栏目分类
八年级数学教案 推荐
- · 因式分解复习教案
- · 轴对称教案1
- · 全等三角形的应用教学设计
- · 用坐标表示轴对称教案
- · 等腰三角形性质说课稿
- · 作轴对称图形教案1
- · 轴对称教案4
- · 轴对称教案3
- · 多边形的内角和教案3
- · 多边形的内角和教案2
- · 三角形的内角和
- · 全等三角形
- · 菱形教案1
- · 分 式
- · 分式的加减法
- · 关于三角形的一些概念
- · 三角形三条边的关系
- · 梯形教案
- · 中心对称和中心对称图形
- · 正方形探索式教学
- · 正方形教学示例
- · 最简二次根式 教学设计示例4
- · 分式的乘除法教案
- · 分式方程教案1
- · 分式方程教案2
- · 反比例函数的图象与性质教案1