全等三角形教学设计
一路求学网 http://www.16qiuxue.com 阅览次数: 748次 12-28 20:02:22
标签:八年级数学下册教案范文,八年级数学上册教案,http://www.16qiuxue.com
全等三角形教学设计,
教学课题:全等三角形
教学目标: 1、了解全等形及全等三角形的概念。
知识技能 2、理解掌握全等三角形的性质。
3、能够准确辩认全等三角形的对应元素。
情感态度 1、在图形变换以用操作的过程中发展空间观念,培养几何直觉。
2、在观察发现生活中的全等形和实际操作中获得全等三角形的体验。
3、在探究和运用全等三角形性质的过程中感受到数学活动的乐趣。
教学重点:探究全等三角形的性质
教学难点:掌握两个全等三角形的对应边、对应角的寻找规律,迅速正确指出两个全等三角 形的对应元素。
教学过程:
一、 提出问题,创设情境
(出示图片)观察思考:每组的两个图形有什么特点?
(1) (2) (3)
师:实图操作把每组的两个图形沿同一水平方向平移使每组中的两个图片叠放在一起。
生:1、每组的两个图形形状大小都一样。
2、每组的两个图形都可以重合。
师:同学们的观察力很棒,上面的三组图形,每组中的两个图形都能够完全重合。那现实生活中能够完全重合的图形的例子?
生:同一张底片洗出的同大小照片是能够完全重合的。
师:总结:那么我们把(板书)能够完全重合的两个图形叫做全等形.
师:观察下面两组图形,它们是不是全等形?并指出它们的相同点与不同点。
(1) (2)
生:它们不是全等形。在图(1)里的两个图形都是八边形,但是它们的大小不相同。在图(2)中两个图形都是由三个大小相同的小正方形组合而成的,帮他们大小相同,但形状 不相同。
师:同学们他回答的好吗?(好!)那是不是应该掌声鼓励。(啪啪。。)这位同学不仅观察力很棒,并且语言组织能力也强。同学们也要像他一样不紧要善于观察更应该要善于总结。如果上面两组图形不是全等形,那么全等形它有什么样的特征呢?
生:全等形的形状、大小都相同。
师:哦说的很好。(板书)全等形的特征:全等形的形状和大小都相同
师:(活动)既然只要保证形状大小相同就可以得到全等形,那么请同学们在纸板上动手
做两个全等的三角形,并把它们取下来。
生:(动手制作)先做一个三角形,然后将取下来的三角形按在纸上做第二个三角形。
师:(与学生交流)做好的同学请亮亮你们的杰作。同学们做的真仔细,有些同学注意了两个人配合节约了不少时间。试着把你们手中的两个三角形叠放在一起看看,他们会怎么样?
生:完全重合。
师:嗯,对。那么我们把(板书)能够完全重合的两个三角形叫做全等三角形
二、导入新课
师:(出示图片)
A A'
B C B' C'
实图操作:将△ABC沿直线BC平移得到△A'B'C'
师:我们把(板书)
互相重合的顶点叫做对应顶点.
互相重合的边叫做对应边.
互相重合的顶点角叫做对应角
现在请同学认真观察指出图中的对应顶点、对应边、对应角。
生:交流总结得出:
对应顶点: A和A'、 B和B' 、 C和C'
对应边:AB和A'B'、BC和B'C'、AC和A'C'
对应角:∠A和∠A' 、∠B和∠B'、∠C和∠C'
师:回答的很好。因为同学们的细心,所以才可以很全面的找出完整的答案。我们通常会把两个全等三角形(板书)
记作:△ABC ≌ △ A'B'C' 符号" ≌ "读作"全等于"
强调:记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。
师:(出示图片) A
(1) A D (2) (3)D E
B C A
B C E F B C
D &n
www.16qiuxue.com
(实图操作)演示图形变换过程,图形通过平移、翻折、旋转后可以完全重合。那么每组图中的三角形为全等三解形。全等三角形的对应边有什么关系呢?对应角呢?
生:师生交流共同得出;
(板书)全等三角形的性质:全等三角形的对应边相等,对应角相等。
师:现在我们要学习利用几何语言来描述其性质(板书)
∵△ABC≌ △DEF (已知)
∴ AB=DE, BC=EF, AC=DF (全等三角形的对应边相等)
∴ ∠ A=∠ D, ∠ B= ∠E , ∠ C= ∠F (全等三角形的对应角相等)
师:如果知道两三角形全等,那么我们就可以得出以上六个结论,三组对应边分边相等,三组对应角分别相等。可是在找全等三角形的对应元素时一般有什么规律呢?现在我们就来一共同学习。
(出示图片)
A
,全等三角形教学设计
全等三角形教学设计
你好,我是本周学习人气王"嘟嘟",今天将由我陪你一起学习。教学课题:全等三角形
教学目标: 1、了解全等形及全等三角形的概念。
知识技能 2、理解掌握全等三角形的性质。
3、能够准确辩认全等三角形的对应元素。
情感态度 1、在图形变换以用操作的过程中发展空间观念,培养几何直觉。
2、在观察发现生活中的全等形和实际操作中获得全等三角形的体验。
3、在探究和运用全等三角形性质的过程中感受到数学活动的乐趣。
教学重点:探究全等三角形的性质
教学难点:掌握两个全等三角形的对应边、对应角的寻找规律,迅速正确指出两个全等三角 形的对应元素。
教学过程:
一、 提出问题,创设情境
(出示图片)观察思考:每组的两个图形有什么特点?
(1) (2) (3)
师:实图操作把每组的两个图形沿同一水平方向平移使每组中的两个图片叠放在一起。
生:1、每组的两个图形形状大小都一样。
2、每组的两个图形都可以重合。
师:同学们的观察力很棒,上面的三组图形,每组中的两个图形都能够完全重合。那现实生活中能够完全重合的图形的例子?
生:同一张底片洗出的同大小照片是能够完全重合的。
师:总结:那么我们把(板书)能够完全重合的两个图形叫做全等形.
师:观察下面两组图形,它们是不是全等形?并指出它们的相同点与不同点。
(1) (2)
生:它们不是全等形。在图(1)里的两个图形都是八边形,但是它们的大小不相同。在图(2)中两个图形都是由三个大小相同的小正方形组合而成的,帮他们大小相同,但形状 不相同。
师:同学们他回答的好吗?(好!)那是不是应该掌声鼓励。(啪啪。。)这位同学不仅观察力很棒,并且语言组织能力也强。同学们也要像他一样不紧要善于观察更应该要善于总结。如果上面两组图形不是全等形,那么全等形它有什么样的特征呢?
生:全等形的形状、大小都相同。
师:哦说的很好。(板书)全等形的特征:全等形的形状和大小都相同
师:(活动)既然只要保证形状大小相同就可以得到全等形,那么请同学们在纸板上动手
做两个全等的三角形,并把它们取下来。
生:(动手制作)先做一个三角形,然后将取下来的三角形按在纸上做第二个三角形。
师:(与学生交流)做好的同学请亮亮你们的杰作。同学们做的真仔细,有些同学注意了两个人配合节约了不少时间。试着把你们手中的两个三角形叠放在一起看看,他们会怎么样?
生:完全重合。
师:嗯,对。那么我们把(板书)能够完全重合的两个三角形叫做全等三角形
二、导入新课
师:(出示图片)
A A'
B C B' C'
实图操作:将△ABC沿直线BC平移得到△A'B'C'
师:我们把(板书)
互相重合的顶点叫做对应顶点.
互相重合的边叫做对应边.
互相重合的顶点角叫做对应角
现在请同学认真观察指出图中的对应顶点、对应边、对应角。
生:交流总结得出:
对应顶点: A和A'、 B和B' 、 C和C'
对应边:AB和A'B'、BC和B'C'、AC和A'C'
对应角:∠A和∠A' 、∠B和∠B'、∠C和∠C'
师:回答的很好。因为同学们的细心,所以才可以很全面的找出完整的答案。我们通常会把两个全等三角形(板书)
记作:△ABC ≌ △ A'B'C' 符号" ≌ "读作"全等于"
强调:记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。
师:(出示图片) A
(1) A D (2) (3)D E
B C A
B C E F B C
D &n
www.16qiuxue.com
全等三角形教学设计
bsp;(实图操作)演示图形变换过程,图形通过平移、翻折、旋转后可以完全重合。那么每组图中的三角形为全等三解形。全等三角形的对应边有什么关系呢?对应角呢?
生:师生交流共同得出;
(板书)全等三角形的性质:全等三角形的对应边相等,对应角相等。
师:现在我们要学习利用几何语言来描述其性质(板书)
∵△ABC≌ △DEF (已知)
∴ AB=DE, BC=EF, AC=DF (全等三角形的对应边相等)
∴ ∠ A=∠ D, ∠ B= ∠E , ∠ C= ∠F (全等三角形的对应角相等)
师:如果知道两三角形全等,那么我们就可以得出以上六个结论,三组对应边分边相等,三组对应角分别相等。可是在找全等三角形的对应元素时一般有什么规律呢?现在我们就来一共同学习。
(出示图片)
A
,全等三角形教学设计
- ·上一篇:人教版七册(古 诗 二 首)教案
- ·下一篇:统计的教学设计
《全等三角形教学设计》相关文章
网友评论>>
栏目分类
八年级数学教案 推荐
- · 因式分解复习教案
- · 轴对称教案1
- · 全等三角形的应用教学设计
- · 用坐标表示轴对称教案
- · 等腰三角形性质说课稿
- · 作轴对称图形教案1
- · 轴对称教案4
- · 轴对称教案3
- · 多边形的内角和教案3
- · 多边形的内角和教案2
- · 三角形的内角和
- · 全等三角形
- · 菱形教案1
- · 分 式
- · 分式的加减法
- · 关于三角形的一些概念
- · 三角形三条边的关系
- · 梯形教案
- · 中心对称和中心对称图形
- · 正方形探索式教学
- · 正方形教学示例
- · 最简二次根式 教学设计示例4
- · 分式的乘除法教案
- · 分式方程教案1
- · 分式方程教案2
- · 反比例函数的图象与性质教案1