公式法教案2
一路求学网 http://www.16qiuxue.com 阅览次数: 454次 12-28 20:02:22
标签:九年级数学下册教案范文,九年级数学复习教案,http://www.16qiuxue.com
公式法教案2,
1.一元二次方程求根公式的推导过程;
2.公式法的概念;
3.利用公式法解一元二次方程.
教学目标
理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.
复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)的求根公式的推导公式,并应用公式法解一元二次方程.
重难点关键
1.重点:求根公式的推导和公式法的应用.
2.难点与关键:一元二次方程求根公式法的推导.
教学过程
一、 复习引入
1. 前面我们学习过解一元二次方程的"直接开平方法",比如,方程
(1)x2=4 (2)(x-2) 2=7
提问1 这种解法的(理论)依据是什么?
提问2 这种解法的局限性是什么?(只对那种"平方式等于非负数"的特殊二次方程有效,不能实施于一般形式的二次方程。)
2.面对这种局限性,怎么办?(使用配方法,把一般形式的二次方程配方成能够"直接开平方"的形式。)
(学生活动)用配方法解方程 2x2+3=7x
(老师点评)略
总结用配方法解一元二次方程的步骤(学生总结,老师点评).
(1)现将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;
(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;
(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±√q;如果q<0,方程无实根.
二、探索新知
用配方法解方程
(1) ax2-7x+3 =0 (2)a x2+bx+3=0
(3)如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.
问题:已知ax2+bx+c=0(a≠0),试推导它的两个根x1= ,x2= (这个方程一定有解吗?什么情况下有解?)
分析:因为前面具体数字已做得很多,我们现在不妨把a、b、c也当成一个具体数字,根据上面的解题步骤就可以一直推下去.
解:移项,得:ax2+bx=-c
二次项系数化为1,得x2+ x=-
配方,得:x2+ x+( )2=- +( )2
即(x+ )2=
∵4a2>0,4a2>0, 当b2-4ac≥0时 ≥0
∴(x+ )2=( )2
直接开平方,得:x+ =± 即x=
∴x1= ,x2=
由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定,因此:
(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac≥0时,将a、b、c代入式子x= 就得到方程的根.(公式所出现的运算,恰好包括了所学过的六中运算,加、减、乘、除、乘方、开方,这体现了公式的统一性与和谐性。)
(2)这个式子叫做一元二次方程的求根公式.
(3)利用求根公式解一元二次方程的方法叫公式法.
公式的理解
(4)由求根公式可知,一元二次方程最多有两个实数根.
例1.用公式法解下列方程.
(1)2x2-x-1=0 (2)x2+1.5=-3x (3) x2- x+ =0 (4)4x2-3x+2=0
分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可.
补:(5)(x-2)(3x-5)=0
三、巩固练习
教材P42 练习1.(1)、(3)、(5)或(2) 、(4) 、(6)
四、应用拓展
例2.某数学兴趣小组对关于x的方程(m+1) +(m-2)x-1=0提出了下列问题.
(1)若使方程为一元二次方程,m是否存在?若存在,求出m并解此方程.
(2)若使方程为一元二次方程m是否存在?若存在,请求出.
你能解决这个问题吗?
分析:能.(1)要使它为一元二次方程,必须满足m2+1=2,同时还要满足(m+1)≠0.
(2)要使它为一元一次方程,必须满足:
① 或② 或③
解:(1)存在.根据题意,得:m2+1=2
m2=1 m=±1
当m=1时,m+1=1+1=2≠0
当m=-1时,m+1=-1+1=0(不合题意,舍去)
∴当m=1时,方程为2x2-1-x=0
a=2,b=-1,c=-1
b2-4ac=(-1)2-4×2×(-1)=1+8=9
x=
x1=,x2=-
因此,该方程是一元二次方程时,m=1,两根x1=1,x2=- .
(2)存在.根据题意,得:①m2+1=1,m2=0,m=0
因为当m=0时,(m+1)+(m-2)=2m-1=-1≠0
所以m=0满足题意.
②当m2+1=0,m不存在.
③当m+1=0,即m=-1时,m-2=-3≠0
所以m=-1也满足题意.
当m=0时,一元一次方程是x-2x-1=0,
解得:x=-1
当m=-1时,一元一次方程是-3x-1=0
解得x=-
因此,当m=0或-1时,该方程是一元一次方程,并且当m=0时,其根为x=-1;当m=-1时,其一元一次方程的根为x=- .
五、归纳小结
本节课应掌握:
(1)求根公式的概念及其推导过程;
(2)公式法的概念;
(3)应用公式法解一元二次方程的步骤:1)将所给的方程变成一般形式,注意移项要变号,尽量让a>0.2)找出系数a,b,c,注意各项的系数包括符号。3)计算b2-4ac,若结果为负数,方程无解,4)若结果为非负数,代入求根公式,算出结果。
(4)初步了解一元二次方程根的情况.
六、布置作业
1.教材P45 复习巩固4.
2.选用作业设计:
一、选择题
1.用公式法解方程4x2-12x=3,得到( ).
A.x= B.x=
C.x= &nb
www.16qiuxue.com
2.方程 x2+4 x+6 =0的根是( ).
A.x1= ,x2= B.x1=6,x2=
C.x1=2 ,x2= D.x1=x2=-
3.(m2-n2)(m2-n2-2)-8=0,则m2-n2的值是( ).
A.4 B.-2 C.4或-2 D.-4或2
二、填空题
1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,条件是________.
2.当x=______时,代数式x2-8x+12的值是-4.
3.若关于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根为0,则m的值是_____.
三、综合提高题
1.用公式法解关于x的方程:x2-2ax-b2+a2=0.
2.设x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,(1)试推导x1+x2=- ,x1·x2= ;(2)求代数式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.
,公式法教案2
公式法教案2
教学内容1.一元二次方程求根公式的推导过程;
2.公式法的概念;
3.利用公式法解一元二次方程.
教学目标
理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.
复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)的求根公式的推导公式,并应用公式法解一元二次方程.
重难点关键
1.重点:求根公式的推导和公式法的应用.
2.难点与关键:一元二次方程求根公式法的推导.
教学过程
一、 复习引入
1. 前面我们学习过解一元二次方程的"直接开平方法",比如,方程
(1)x2=4 (2)(x-2) 2=7
提问1 这种解法的(理论)依据是什么?
提问2 这种解法的局限性是什么?(只对那种"平方式等于非负数"的特殊二次方程有效,不能实施于一般形式的二次方程。)
2.面对这种局限性,怎么办?(使用配方法,把一般形式的二次方程配方成能够"直接开平方"的形式。)
(学生活动)用配方法解方程 2x2+3=7x
(老师点评)略
总结用配方法解一元二次方程的步骤(学生总结,老师点评).
(1)现将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;
(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;
(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±√q;如果q<0,方程无实根.
二、探索新知
用配方法解方程
(1) ax2-7x+3 =0 (2)a x2+bx+3=0
(3)如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.
问题:已知ax2+bx+c=0(a≠0),试推导它的两个根x1= ,x2= (这个方程一定有解吗?什么情况下有解?)
分析:因为前面具体数字已做得很多,我们现在不妨把a、b、c也当成一个具体数字,根据上面的解题步骤就可以一直推下去.
解:移项,得:ax2+bx=-c
二次项系数化为1,得x2+ x=-
配方,得:x2+ x+( )2=- +( )2
即(x+ )2=
∵4a2>0,4a2>0, 当b2-4ac≥0时 ≥0
∴(x+ )2=( )2
直接开平方,得:x+ =± 即x=
∴x1= ,x2=
由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定,因此:
(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac≥0时,将a、b、c代入式子x= 就得到方程的根.(公式所出现的运算,恰好包括了所学过的六中运算,加、减、乘、除、乘方、开方,这体现了公式的统一性与和谐性。)
(2)这个式子叫做一元二次方程的求根公式.
(3)利用求根公式解一元二次方程的方法叫公式法.
公式的理解
(4)由求根公式可知,一元二次方程最多有两个实数根.
例1.用公式法解下列方程.
(1)2x2-x-1=0 (2)x2+1.5=-3x (3) x2- x+ =0 (4)4x2-3x+2=0
分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可.
补:(5)(x-2)(3x-5)=0
三、巩固练习
教材P42 练习1.(1)、(3)、(5)或(2) 、(4) 、(6)
四、应用拓展
例2.某数学兴趣小组对关于x的方程(m+1) +(m-2)x-1=0提出了下列问题.
(1)若使方程为一元二次方程,m是否存在?若存在,求出m并解此方程.
(2)若使方程为一元二次方程m是否存在?若存在,请求出.
你能解决这个问题吗?
分析:能.(1)要使它为一元二次方程,必须满足m2+1=2,同时还要满足(m+1)≠0.
(2)要使它为一元一次方程,必须满足:
① 或② 或③
解:(1)存在.根据题意,得:m2+1=2
m2=1 m=±1
当m=1时,m+1=1+1=2≠0
当m=-1时,m+1=-1+1=0(不合题意,舍去)
∴当m=1时,方程为2x2-1-x=0
a=2,b=-1,c=-1
b2-4ac=(-1)2-4×2×(-1)=1+8=9
x=
x1=,x2=-
因此,该方程是一元二次方程时,m=1,两根x1=1,x2=- .
(2)存在.根据题意,得:①m2+1=1,m2=0,m=0
因为当m=0时,(m+1)+(m-2)=2m-1=-1≠0
所以m=0满足题意.
②当m2+1=0,m不存在.
③当m+1=0,即m=-1时,m-2=-3≠0
所以m=-1也满足题意.
当m=0时,一元一次方程是x-2x-1=0,
解得:x=-1
当m=-1时,一元一次方程是-3x-1=0
解得x=-
因此,当m=0或-1时,该方程是一元一次方程,并且当m=0时,其根为x=-1;当m=-1时,其一元一次方程的根为x=- .
五、归纳小结
本节课应掌握:
(1)求根公式的概念及其推导过程;
(2)公式法的概念;
(3)应用公式法解一元二次方程的步骤:1)将所给的方程变成一般形式,注意移项要变号,尽量让a>0.2)找出系数a,b,c,注意各项的系数包括符号。3)计算b2-4ac,若结果为负数,方程无解,4)若结果为非负数,代入求根公式,算出结果。
(4)初步了解一元二次方程根的情况.
六、布置作业
1.教材P45 复习巩固4.
2.选用作业设计:
一、选择题
1.用公式法解方程4x2-12x=3,得到( ).
A.x= B.x=
C.x= &nb
www.16qiuxue.com
公式法教案2
sp; D.x=2.方程 x2+4 x+6 =0的根是( ).
A.x1= ,x2= B.x1=6,x2=
C.x1=2 ,x2= D.x1=x2=-
3.(m2-n2)(m2-n2-2)-8=0,则m2-n2的值是( ).
A.4 B.-2 C.4或-2 D.-4或2
二、填空题
1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,条件是________.
2.当x=______时,代数式x2-8x+12的值是-4.
3.若关于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根为0,则m的值是_____.
三、综合提高题
1.用公式法解关于x的方程:x2-2ax-b2+a2=0.
2.设x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,(1)试推导x1+x2=- ,x1·x2= ;(2)求代数式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.
,公式法教案2
- ·上一篇:直接开平方法教案2
- ·下一篇:word power教案
网友评论>>
栏目分类
九年级数学教案 推荐
- · 图形的旋转教案2
- · 实际问题与一元二次方程教案7
- · 实际问题与一元二次方程教案3
- · 发现一元二次方程根与系数的关系教案1
- · 圆的内接四边形
- · 直线和圆的位置关系
- · 三角形的内切圆
- · 切线的判定和性质
- · 图案设计教学设计
- · 一元二次方程教案
- · 用列举法求概率教案
- · (圆周角的性质)教学案例
- · 用公式法解一元二次方程教案
- · 一元二次方程
- · 二次函数与一元二次方程教案2
- · 圆柱和圆锥的侧面展开图
- · 相似三角形教案
- · 相似多边形教案
- · 从梯子的倾斜程度谈起教案1
- · 从梯子的倾斜程度谈起教案2
- · 正切和余切教案1
- · 画正多边形
- · 圆的周长、弧长
- · 实际问题与反比例函数
- · 一元二次方程的解法
- · 反比例函数及其图象